Lecture 11

Andrei Antonenko

February 26, 2003

1 Examples of bases

 \overline{a}

Last time we studied bases of vector spaces. Today we're going to give some examples of bases.

Example 1.1. Consider the vector space \mathbb{P}_2 — the space of polynomials with degree less than or equal to 2. Let's consider the following 3 vectors in this vector space:

$$
u_1 = t^2 + 1
$$
, $u_2 = t + 1$, $u_3 = t - 1$.

Let's determine whether it is a basis or not. We have to check 2 conditions:

Spanning set To check that these vectors form a spanning set for \mathbb{P}_2 we should take arbitrary vector from \mathbb{P}_2 and try to express it as a linear combination of the vectors from the basis. Let's take arbitrary polynomial $at^2 + bt + c$:

$$
at^2 + bt + c = x(t^2 + 1) + y(t + 1) + z(t - 1) = xt^2 + (y + z)t + (x + y - z).
$$

So, we can see that this is equivalent to the following system of linear equations, which we will try to solve:

 $\left($ \mathcal{L} x $= a$ $y + z = b$ $x + y - z = c$ subtract the 1st eq. from the 3rd one \overline{a} $\left($ \mathbf{I} $x = a$ $y + z = b$ $y - z = c - a$ subtract the 2nd eq. from the 3rd one \overline{a} $\left($ \mathcal{L} x $= a$ $y + z = b$ $-2z = c - a - b$

So, we see that $z=\frac{1}{2}$ $\frac{1}{2}(a+b-c), y=\frac{1}{2}$ $\frac{1}{2}(b+c-a)$, and $x=a$. So, we got the expression for arbitrary polynomial as a linear combination of given:

$$
at^{2} + bt + c = a(t^{2} + 1) + \frac{1}{2}(b + c - a)(t + 1) + \frac{1}{2}(a + b - c)(t - 1).
$$

So, this system is a spanning set.

Linear independence To check that these vectors are linearly independent we form a linear combination which is equal to 0:

$$
x(t^{2} + 1) + y(t + 1) + z(t - 1) = 0 \Leftrightarrow xt^{2} + (y + z)t + (x + y - z) = 0.
$$

This is equivalent to the following linear system:

$$
\begin{cases}\nx & = 0 \\
y + z = 0 \\
x + y - z = 0\n\end{cases}
$$
\nsubtract the 1st eq. from the 3rd one
\n
$$
\begin{cases}\nx & = 0 \\
y + z = 0 \\
y - z = 0\n\end{cases}
$$
\nsubtract the 2nd eq. from the 3rd one
\n
$$
\begin{cases}\nx & = 0 \\
y + z = 0 \\
y + z = 0 \\
z = 0\n\end{cases}
$$

So, we see that the only solution for this system is $x = 0$, $y = 0$, and $z = 0$. Thus, these vectors are linearly independent.

 $\overline{0}$

So, since both properties hold for this system of vectors, we deduce that this system is a basis.

Example 1.2. Consider the vector space \mathbb{P}_2 — the space of polynomials with degree less than or equal to 2. Let's consider the following 3 vectors in this vector space:

$$
u_1 = t^2 + t + 2
$$
, $u_2 = t^2 + 1$, $u_3 = t + 1$.

Let's determine whether it is a basis or not. We have to check 2 conditions:

Spanning set To check that these vectors form a spanning set for \mathbb{P}_2 we should take arbitrary vector from \mathbb{P}_2 and try to express it as a linear combination of the vectors from the basis. Let's take arbitrary polynomial $at^2 + bt + c$:

$$
at2 + bt + c = x(t2 + t + 2) + y(t2 + 1) + z(t + 1) = (x + y)t2 + (x + z)t + (2x + y + z).
$$

So, we can see that this is equivalent to the following system of linear equations, which we will try to solve:

 $\left($ \mathbf{I} $x + y = a$ $x + z = b$ $2x + y + z = c$ subtract the 1st eq. mult. by 2 from the 3rd one, and subtract the 1st eq. from the 2nd one \overline{a} $\left($ \mathcal{L} $x + y = a$ $- y + z = b - a$ $- y + z = c - 2a$ subtract the 2nd eq. from the 3rd one \overline{a} $\left($ $\left| \right|$ $x + y = a$ $- y + z = b$ $0 = c - a - b$

So, we see that this system has no solution if $c - a - b \neq 0$. For example, if $a = 1$, $b = 1$, $c = 1$, then $c - a - b = 1 - 1 - 1 = -1 \neq 0$, so the vector $at^2 + bt + c = t^2 + t + 1$ can not be expressed as a linear combination of the given vectors. So we deduce, that this system of vectors is not a basis.

Actually, here we can stop, and do not check the linear independence $-\omega e$ know, that it is not a basis already!!! But we will show how to check that these vectors are linearly dependent.

Linear independence To find whether these vectors are linearly independent or not we form a linear combination which is equal to 0:

$$
x(t2 + t + 2) + y(t2 + 1) + z(t + 1) = 0 \Leftrightarrow (x + y)t2 + (x + z)t + (2x + y + z) = 0.
$$

This is equivalent to the following linear system:

 $\overline{ }$

 $\overline{ }$

 $\left($ \mathcal{L} $x + y = 0$ $x + z = 0$ $2x + y + z = 0$ subtract the 1st eq. mult. by 2 from the 3rd one, and subtract the 1st eq. from the 2nd one $\overline{}$ $\left($ \mathcal{L} $x + y = 0$ $- y + z = 0$ $- y + z = 0$ subtract the 2nd eq. from the 3rd one \overline{a} $\sqrt{ }$ \mathcal{L} $x + y = 0$ $- y + z = 0$ $0 = 0$

So we see that this system has nonzero solution, for example $(1, -1, -1)$. So, the linear combination with these coefficients is non trivial and is equal to 0:

$$
1(t2 + t + 2) - 1(t2 + 1) - 1(t + 1) = 0
$$

Thus these vectors are linearly dependent.

2 Dimension

Now we'll state the following theorem about linear dependence.

Theorem 2.1 (Main lemma about linear dependence). Let u_1, u_2, \ldots, u_n is a basis for vector space V. Let $m > n$. Then any m vectors from V are linearly dependent.

Example 2.2. *Vectors* $\Big($ 1 0 $\Big)$ and $\Big($ 0 1 !
} form a basis for \mathbb{R}^2 . So, any 3 vectors from \mathbb{R}^2 are linearly dependent. For example we can say that

$$
v_1 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

are linearly dependent without finding a nontrivial linear combination of them.

The following corollary is one of the main results in linear algebra.

Corollary 2.3. All bases of the given vector space V have the same number of vectors.

Definition 2.4. The number of vectors in basis of V is called the **dimension** of V. It is denoted by $\dim V$.

Example 2.5. The space \mathbb{R}^2 has 2 vectors in its basis, so dim $\mathbb{R}^2 = 2$.

Example 2.6. The space \mathbb{P}_2 of polynomials of degree less than or equal to 2 has dimension equal to 3, since it has a basis of 3 vectors: $u_1(t) = t^2$, $u_2(t) = t$, and $u_3(t) = 1$. So, dim $\mathbb{P}_2 = 3$.

Now we are ready to give the proofs of these main results.

Proof of the Main Lemma about linear dependence. Let we have m vectors in the V: v_1, v_2 , \ldots , v_m , and $m > n$, where *n* is dimension of *V*. Vectors u_1, u_2, \ldots, u_n form a basis for *V*, so we can express vectors v_i 's as linear combinations of u_i 's:

$$
v_1 = a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n
$$

\n
$$
v_2 = a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n
$$

\n...
\n
$$
v_m = a_{m1}u_1 + a_{m2}u_2 + \dots + a_{mn}u_n
$$

Let's form a linear combination of v_i 's which is equal to zero, and prove that it may be nontrivial — then it will be proved that v_i 's are linearly dependent.

$$
\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_m v_m = \lambda_1 (a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n)
$$

+
$$
\lambda_2 (a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n)
$$

+
$$
\dots
$$

+
$$
\lambda_m (a_{m1}u_1 + a_{m2}u_2 + \dots + a_{mn}u_n)
$$

By rearranging terms, we write that the same linear combination is equal to

$$
\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_m v_m = u_1(\lambda_1 a_{11} + \lambda_2 a_{21} + \dots + \lambda_m a_{m1}) + u_2(\lambda_1 a_{12} + \lambda_2 a_{22} + \dots + \lambda_m a_{m2}) + \dots + u_n(\lambda_1 a_{1n} + \lambda_2 a_{2n} + \dots + \lambda_m a_{mn})
$$

In order for it to be equal to $\mathbf{0}$, we will write that coefficients are equal to 0 (since u_i 's are independent). We'll have the system of linear equations:

$$
\begin{cases}\n\lambda_1 a_{11} + \lambda_2 a_{21} + \cdots + \lambda_m a_{m1} = 0 \\
\lambda_1 a_{12} + \lambda_2 a_{22} + \cdots + \lambda_m a_{m2} = 0 \\
\vdots \\
\lambda_1 a_{1n} + \lambda_2 a_{2n} + \cdots + \lambda_m a_{mn} = 0\n\end{cases}
$$

This is a homogeneous system, and the number of equations is n , the number of variables is m, so the number of equations is less then the number of variables (since $n < m$). So, it has non-trivial solution — there exist λ_i 's not all equal to 0, such that linear combination of v_i 's is equal to 0 . So, v_i 's are linearly dependent. \Box

Proof of the Corollary 2.3. Let we have 2 bases with different numbers of vectors, say m in the first basis, and n in the second one. Let $m > n$. But by the previous theorem any m vectors are linearly dependent. But they are in basis, so they should be independent! Contradiction proves the corollary. \Box